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1 Introduction

The Maxwell system describes the behaviour of electromagnetic fields. Nédélec’s edge
finite element method is an efficient discretization technique to solve this equation which
involves the curl-curl operator numerically [13, 10]. Although thematrix arising from the
linear system is sparse, direct solvers cannot solve the problem with linear complexity.
In the presence of quasi-uniform meshes, the memory requirement of 𝑂 (𝑁4/3) and
computational time of 𝑂 (𝑁2) are expected where the problem size is 𝑁 [11].
Matrices with full rank often can be approximated using low-rank matrices; but, it is

not always applicable. Thus, it is desirable to present a block-wise partitioning of the ma-
trix and approximate appropriately chosen (using an admissibility condition) blocks by
their low-rank decompositions. Hierarchical matrices (H -matrices), [7], are block wise
low-rank matrices that allow us to represent dense matrices with data sparse approxi-
mations and the logarithmic-linear storage complexity, i.e., O(𝑁𝑚 log(𝑁)), where 𝑚 is
a parameter that controls the accuracy of the approximation.
Besides the storage complexity reduction, another application of the H -matrix ap-

proximations is to use them as a preconditioner to solve the system directly, or to use
them as preconditioner to reduce the number of iterations in Krylov-based iterative
solvers based on matrix-vector multiplication, e.g., GMRES [15]. In the time-harmonic
case, the system matrix may become indefinite and ill-conditioned, in particular for
high frequency cases. In this regime, the usual factorization methods such as incom-
plete LU (iLU) do not lead to reliable results and converge to the exact solution poorly.
Then it is very difficult to design Galerkin discretizations [12] and efficient iterative
solvers [4] (see also [9] for recent studies).
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In this paper, we study the effect of applying hierarchical 𝐿𝑈 decompositions, i.e.,
H − 𝐿𝑈 decompositions, as a preconditioner to solve the Maxwell equations using iter-
ative solvers. The idea of usingH matrices for the curl-curl operators and magnetostatic
model problems was introduced in [3]. A preconditioner based on the H matrices was
used in [2] and [14] for solving the Maxwell equations in the low-frequency regime.
In [5], the authors showed that the inverse of the Galerkin matrix corresponding to the
FEM discretization of time-harmonic Maxwell equations can be approximated by an
H -matrix and proved the exponential convergence in the maximum block-rank. This ap-
proximation can be used to prove the existence ofH -𝐿𝑈 factorization without frequency
restriction.
In this work, in addition to addressing the advantage of iterative hierarchical precon-

ditioning, we exploit the influence of applying an inverse of H -matrix approximations
as a preconditioner to solve the linear systems directly. Our numerical tests also include
studies on the influence of the wave number. As observed, for both low and high fre-
quencymaterials usingH−𝐿𝑈 factorization will lead to a fast and accurate convergence
of the iterative solvers.
The paper is organized as follows. In Section 2, we briefly introduce the Maxwell

system and present the Nédélec’s finite element discretization. The H -matrices and
how to compute the inverse of an H -matrix approximation for the Galerkin system
matrix are explained in Section 3. We also present an algorithm to compute theH − 𝐿𝑈

approximation of a matrix, and use it as a preconditioner to solve the system directly. In
Section 4, numerical results are presented to substantiate the efficiency of the hierarchical
matrix as a direct and iterative solver. Finally, the conclusions are given in Section 5.

2 The Maxwell equations

Denoting Ĥ the magnetic field intensity, E the electric field density for the domain
Ω ⊂ R𝑑 (𝑑 = 2, 3), we have the time-harmonic Maxwell equations as

∇ · (𝛽Ĥ) = 0 in Ω × I, (1a)
∇ · (𝛼E) = 𝜌 in Ω × I, (1b)(

𝛼
𝜕

𝜕𝑡
+ 𝜒

)
E−∇ × Ĥ = F in Ω × I, (1c)

𝛽
𝜕

𝜕𝑡
Ĥ + ∇ × E = 0 in Ω × I, (1d)

where F is the applied electrical force, 𝜌 is the charge density, and I = (0, 𝑇] is the
time interval. In addition, 𝛼 and 𝛽 are the dielectric and magnetic permeabilities, and 𝜒
is the conductivity constant. Considering an arbitrary frequency 𝜔, with respect to time,
the electric and magnetic fields can be represented as follows

E(𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑬 (𝑥), (2a)

Ĥ (𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑯(𝑥), (2b)
F (𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑭(𝑥). (2c)

Replacing (2a) and (2b) into (1c) and (1d), we obtain
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−∇ × 𝑯 − 𝑖𝜔𝜁𝑬 = F(𝑥) in Ω, (3a)
∇ × 𝑬 − 𝑖𝜔𝛽𝑯 = 0 in Ω, (3b)

where 𝜁 := 𝛼 + 𝑖𝜒/𝜔. Also, we consider a perfect conduction boundary condition (we
surround Ω by a perfect bounded material i.e., 𝐸 × 𝒏 = 0). Therefore, we have the
following second-order operator for (3)

L𝑬 := ∇ × (𝛽−1∇ × 𝑬) − 𝜅𝑬 = 𝑱𝑆 in Ω, (4)

where 𝜅 := 𝜔2𝜁 and 𝑱𝑆 := −𝑖𝜔𝑭.

2.1 Discretization by edge elements

To present a Galerkin weak formulation for (4), we denote by 𝑳2 (Ω) as the space of
vector field with three entries from 𝐿2 (Ω), i.e.,

𝑳2 (Ω) :=
{
U = (𝑈1,𝑈2,𝑈3) : 𝑈𝑖 ∈ 𝐿2 (Ω), 𝑖 = 1, 2, 3

}
,

with 〈· , ·〉 as the inner product on this space, and continue with defining the following
space

𝑯(curl,Ω) :=
{
U ∈ 𝑳2 (Ω) : ∇ × U ∈ 𝑳2 (Ω)

}
,

equipped with the norm

‖U‖2𝑯 (curl,Ω) := ‖U‖2
𝑳2 (Ω) + ‖∇ × U‖2

𝑳2 (Ω) .

Considering homogeneous Dirichlet boundary conditions, the space 𝑯0 (curl,Ω) ⊂
𝑯(curl,Ω) is introduced as follows

𝑯0 (curl,Ω) := {U ∈ 𝑳2 (Ω) : ∇ × U ∈ 𝑳2 (Ω), U × n = 0 on Γ}.

Then, the weak formulation for (4) can be written as : find 𝑬 ∈ 𝑯0 (curl,Ω)

𝑎(𝑬,Φ) := 〈∇ × 𝑬,∇ ×Φ〉 − 𝜅 〈𝑬,Φ〉 = 〈𝑱𝑆 ,Φ〉 ∀Φ ∈ 𝑯0 (curl,Ω). (5)

Here, we should note that 𝜅 is not an eigenvalue of the operator ∇ × ∇× [13, Corol-
lary 4.19], in addition we have 𝜅 ≠ 0, and we set 𝛽 = 1. The existence of the unique
solution for the variational formulation (5) is proven in [10, Thm. 5.2], and the following
a priori estimate is obtained

‖𝑬‖𝑯 (curl,Ω) ≤ 𝐶∗ ‖𝑱𝑆 ‖𝐿2 (Ω) , (6)

where 𝐶∗ depends on Ω as well as 𝜅.
For the discretization, we consider quasi-uniformmesh simplicesT = {𝑇1, . . . , 𝑇𝑁T },

where 𝑇𝑗 ∈ T are open elements and denote ℎ := max𝑇𝑗 ∈T diam(𝑇𝑗 ). We assume T is
a Ciarlet-regular mesh, i.e., it does not contain any hanging nodes. We also assume there
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is 𝛾 > 0 such that diam(𝑇ℓ) ≤ 𝛾 |𝑇ℓ |1/3 for all 𝑇ℓ ∈ T . In order to present the Galerkin
FEM for (5), we consider lowest order Nédélec’s curl-conforming elements of the first
kind, i.e.,

Vℎ := {vℎ ∈ 𝑯(curl,Ω) : vℎ |𝑇 ∈ N0 (𝑇) ∀𝑇 ∈ T },
Vℎ,0 := Vℎ ∩ 𝑯0 (curl,Ω),

where for all 𝑇 ∈ Tℎ , the lowest order local Nédélec space of the first kind N0 (𝑇) is
defined as [13]

N𝑜 (𝑇) = {𝒂 + 𝒃 × x : 𝒂, 𝒃 ∈ R3, x ∈ 𝑇}.

We denote Yℎ := {Φ1, . . . ,Φ𝑁 } as a basis with 𝑁 as the dimension of Vℎ,0. This basis
is uniquely defined by the property 𝜎(Φ𝑖 , 𝑒 𝑗 ) = 𝛿𝑖 𝑗 , where 𝑒 𝑗 denotes an interior edge
of the mesh and 𝜎(𝑝, 𝑒) is the line integral of the tangential component of 𝑝 along 𝑒.
Then, the Galerkin FEM for (5) is given as: Find 𝑬ℎ ∈ Vℎ,0 such that

𝑎(𝑬ℎ ,Φℎ) = 〈𝑱𝑆 ,Φℎ〉 ∀Φℎ ∈ Vℎ,0. (7)

This is equivalent to solve the following system

A𝑥 = 𝑏, where A = [A𝑖 𝑗 ]𝑁𝑖, 𝑗=1 with A𝑖 𝑗 := 𝑎(Φ𝑖 ,Φ 𝑗 ), Φ 𝑗 , Φ𝑖 ∈ Yℎ , (8)

and the right hand side vector 𝑏 is defined as 𝑏 𝑗 :=
〈
𝑱𝑆 ,Φ 𝑗

〉
, 𝑗 ∈ {1, 2, . . . , 𝑁}.

3 H-matrices and H-matrix arithmetic

H -matrices are defined based on a partition 𝑃 generated from a clustering algorithm
that allows us to determine which blocks can be approximated by low-rank matrices or
are small [7].
ApplyingH -matrix approximations allows us to store large matrices in the format of

low-rank block-wise matrices which could lead to logarithmic-linear storage complexity
provided that a proper method is used to define the hierarchical structure that results in
the final block-wise format of the matrix. In the following lemma from [5], it is shown
that the inverse of theGalerkinmatrixA (8) can be approximated using anH -matrix, and
proven that this approximation converges exponentially with respect to the maximum
block rank to A.

Definition 1 [H -matrices] A matrix BH ∈ C𝑁×𝑁 is called an H -matrix, if for every
admissible block (𝜏, 𝜎), we have the following factorization

BH |𝜏×𝜎 = X𝜏𝜎Y𝐻
𝜏𝜎 ,

of rank 𝑟 where X𝜏𝜎 ∈ C𝜏×𝑟 and Y𝜏𝜎 ∈ C𝜎×𝑟 .
In order to use the inverse of theH -matrix approximation ofA as a preconditioner, first,
we need to find anH -matrix approximation for A, then we obtain the inverse using the
iterative method of Schulz [8].



Hierarchical LU Preconditioning for the Time-Harmonic Maxwell Equations 395

Lemma 1 ([5]) Let A be the Galerkin matrix defined in (8). Then, there exists an
H -matrix approximation BH with the maximum block rank 𝑟 (rank of all the blocks
of BH is either smaller than or equal to 𝑟) such that

A−1 − BH




2 ≤ �̄�ℎ−1𝑒−𝑐 (𝑟

1/4/ln 𝑟 ) ,

where �̄� and 𝑐 are constants depending only on material parameters, and the properties
of Ω.

In the definition ofH -matrices, the low-rank blocks are determined based on the concept
of 𝜂-admissibility defined in [7]. In the following, the mathematical definition of an
H -matrix is given.
Although computing the inverse of the H -matrix approximation of the Galerkin

system matrix leads to logarithmic-linear complexity, the computational cost to solve
the linear system directly is still too high. Thus, we need to use another alternative to
reduce the numerical cost such as theH −𝐿𝑈 factorization. In the following, we present
an algorithm from [1, Sec. 2.9], and use it as a preconditioner to solve the linear systems.

Algorithm 1 H − 𝐿𝑈 decomposition and application in preconditioning of a simple
iterative solver for (7).

1) Compute the H-matrix approximation of A, i.e., AH

2) Compute the H- matrix 𝐿𝑈 decomposition of AH as follows

1) for 𝑗 = 1, . . . , 𝑁

for 𝑘 = 1, . . . , 𝑗 − 1

Solve the system
𝑘∑︁
𝑖=1

𝐿 𝑗𝑖𝑈𝑖𝑘 = (AH) 𝑗𝑘 to get 𝐿 𝑗𝑘 .

2) Compute 𝐿 𝑗 𝑗 and𝑈 𝑗 𝑗 by 𝐿 𝑗 𝑗𝑈 𝑗 𝑗 = 𝐴 𝑗 𝑗 −
𝑗−1∑︁
𝑖=1

𝐿 𝑗𝑖𝑈𝑖 𝑗 .

3) for 𝑘 = 𝑗 + 1, . . . , 𝑁

Solve the system
𝑗∑︁

𝑖=1
𝐿 𝑗𝑖𝑈𝑖𝑘 = (AH) 𝑗𝑘 to get𝑈 𝑗𝑘 .

3) for 𝑖 = 1, . . . ,MaxIt

Compute 𝑟 = 𝑏 − A 𝑥 and err=‖𝑟 ‖2 /‖𝑏 ‖2
Compute 𝑥 = 𝑥 +𝑈−1 (𝐿−1 𝑟

)
.

if err < TOL break

4) Compute error = ‖A 𝑥 − 𝑏 ‖2.
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4 Main algorithm and numerical experiments

In this section, we first present the main algorithm of this work, and then we study three
numerical examples to solve the linear system arising from the Maxwell equations using
anH -matrix approximation as a preconditioner. For this, we employ the geometrically
balanced cluster tree presented in [6], and we set the admissibility parameter 𝜂 = 2.
We use a truncated singular value decomposition (SVD) with different ranks 𝑟 to com-
pute BH as the inverse of AH obtained from the Schulz iteration. In other words, for
admissible blocks (𝜏, 𝜎), we have AH |𝜏×𝜎 := U𝑟S𝑟V𝑇

𝑟 where U𝑟 ∈ R𝜏×𝑟 , S𝑟 ∈ R𝑟×𝑟
and V𝑟 ∈ R𝜎×𝑟 are the first 𝑟 columns of U, S and V, respectively. Then, we find the
inverse BH for the matrix AH .

4.1 Example 1: a unit box

The geometry is Ω = (0, 1)3 and 𝑱𝑆 = [0, 0, 1]>. The coarse mesh consists of 6 tetra-
hedrons. This mesh is uniformly refined 𝑘 times, 𝑘 = 2, . . . , 7. All computations are
performed in MATLAB with 125 cores. Table 1 displays the iteration numbers of the
preconditioned GMRES method with the describedH -matrix preconditioner for differ-
ent values of 𝜅. The GMRES method is stopped if a relative accuracy of 𝑇𝑂𝐿 = 10−5
of the residual is reached. In all experiments, the parameter 𝛽 = 1 is chosen. After 100
iterations, we restart GMRES. The results show that the H -matrices can be used as an
efficient preconditioner if 𝜅 ≤ 202. For higher frequencies, the iteration numbers grow
in some, but not all levels 𝑘 . This is due to the computation of the 𝐿𝑈 decomposition
of theH -matrix. The approximation of the original matrix by theH -matrix is still very
good, also in the case of 𝑘 = 5 and 𝜅 = 900.

Table 1 GMRES iterations numbers for Example 1.

𝜅 𝑁dof 25 100 225 400 625 900
𝑘 = 2 98 1 1 1 1 1 1

𝑘 = 3 604 2 2 2 2 2 2

𝑘 = 4 3 184 2 4 5 5 4 3

𝑘 = 5 41 024 3 4 8 9 11 > 3000

𝑘 = 6 238 688 3 6 20 4 48 25

𝑘 = 7 1 807 264 4 5 7 19 46 93

4.2 Example 2: two boxes

Here the geometry consists of two boxes, i.e., Ω := (−1, 1) × (−1, 1) × [−1,−2) ∪
(−2, 2) × [1, 2) × (−1, 1) ∪ (−2, 2) × [−1, 1] × [−1, 1] ∪ (−1, 1) × (−1, 1) × [1, 2) ∪
(−2, 2) × [−1, 2) × (−1, 1). We set the parameters 𝜅 = 1, 𝑱𝑆 = [1, 1, 1]>, and 𝛽 = 1.
The computational domain with and the inverse of H -matrix approximation of the
stiffness matrix is shown in Figure 1. We have 24 440 admissible blocks, 48 404 small
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Fig. 1 Example 2. The computational geometry (left) and the inverse of H-matrix approximation of
the stiffness matrix (7) H-matrix clustering (right) for 𝑁dof = 22 001.

Fig. 2 Approximation error of 𝐵H in Example 2 for a stiffness matrix with 𝑁dof = 22 001 (left) and
the relative allocated memory (right).

blocks and the depth is 16. The decay of the approximation error versus 𝑟 and the
corresponding allocated memory are shown in Figure 2. As shown, using higher 𝑟 gives
rise to a reliable inverse of theH -matrix approximation. The computed BH can be used
as a preconditioner to solve the linear system (7) directly.

4.3 Example 3: a magnet surrounded by air

We consider a magnet surrounded by air where the box is 1 × 1 × 1 and the magnet
dimension is 0.5 × 0.5 × 0.75. We set 𝜅 = 10, 𝛽 = 10 and 𝑱𝑆 = [10, 10, 10]>. The
geometry and the H -approximation of A for 𝑁dof = 122 202 is shown in Figure 3. In
this approximation, we have 215 964 admissible blocks, 402 451 small blocks, and the
depth is 15. TheH−LU decomposition ofA is given in Figure 4.We use Algorithm 1 for
different 𝑁dof to solve the linear system. Table 2 shows the results for different matrices
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Fig. 3 Example 3. The computational geometry (left) and H-matrix approximation of A for 𝑁dof =
122 202 (right).

Fig. 4 The H-LU decomposition for the stiffness matrix resulting from Example 3 corresponding to
Figure 3.

Table 2 The iterative solver preconditioned by H − 𝐿𝑈 used to solve the Maxwell equations for
different 𝑁dof.

𝑁dof 5 492 8 050 13 602 33 933 48 811 70 133 78 603 96 846 129 200 304 309
error 7.22 e -9 1.07 e -9 5.80e-9 2.23e-8 5.11e-8 9.06e-8 5.98e-10 4.38e-10 5.04e-10 5.78e-9

time [s] 11.52 35.24 60.52 151.71 256.18 546.9 602.73 481 820.9 2335

iterations 3 3 3 3 4 4 5 5 6 7

using 𝑇𝑂𝐿 = 1 × 10−8. For all cases, the negligible error indicates the accuracy the
method, and the elapsed CPU time points out its efficiency. For the last two examples, we
usedNetgen/ngsolve [16] to produce themeshes (denoting different 𝑁dof) and assembling
the matrices of (7).
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5 Conclusion

In this work, theH -matrix approximation was used to solve the time-harmonicMaxwell
equations. As a direct solver, the inverse of the hierarchical matrix approximation of the
linear system was employed as a preconditioner, where an accurate approximation was
achieved. Additionally, we then employed anH − 𝐿𝑈 factorization as a preconditioner.
In both cases, the use of H matrix approximations could reduce the computational

cost and increase the accuracy of the solution. The H matrices can be coupled with
the domain decomposition to take advantage of both approaches, i.e., to reduce the
complexity and accelerate the convergence of the iterative solvers. This possibility will
be addressed in the future papers.
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